
14
Specifying Color

In the X Window System, color can be a complicated business. However, it doesn’t have
to be; you can keep it simple. Every X-based system comes with a pre-fabricated database
of colors to choose from. You can access these colors by naming them in an option on the
command line or as a resource in a resource file. The clients and the server work out the
rest.

Most of the color names you can think of, plus many more esoteric names, are included in
the standard color database. So odds are you can just pick a name such as “dark blue” or
“violet” and the database will deliver. A case in point: the following command creates an
xbiff window with a dark blue foreground (for the mailbox picture) and an elegant violet
background.

xbiff -bg violet -fg "dark blue" &

This chapter describes the traditional X methods of using color to decorate your X windows. If you
are using color inside an application (e.g., you are using the GIMP for doing graphics), this
technology still applies, but you’ll also want to look at the documentation for the software you are
using and perhaps read Chapter 3, Selection of Useful X Clients. The X desktops, GNOME and
KDE, have their own tools for managing color—see Chapter 8, Using GNOME, or Chapter 9,
Using KDE, for information on configuring color in your GNOME or KDE desktop.

Using Color
A color display uses multiple bits per pixel to determine what color to display for that
pixel. The number of bits associated with each pixel is referred to as the depth of the
display.The depth determines how many colors are available; that is, how many colors

You’ll also see depth referred to as the number of planes or bitplanes. Think of a plane running
through the first bit of each pixel on your screen, another plane running through the second bit of
each pixel, etc. Thus a display with a depth of 8 has 8 planes; if the depth is 16, there are 16 planes.

can be displayed at the same time. Old monochrome displays used just one bit per pixel,
resulting in two possible colors (e.g., black and white, or black and amber) depending on
whether the bit was on or off. Modern color display hardware normally has a color depth
of at least 16 bits, giving a possible 65,536 (216) colors, while a depth of 24 results in
16,777,216 (224) color choices and a depth of 32 allows for over 4 billion (232) colors.

The color depth is determined for an X session when the server is started. The number of
available color depths is a function of your monitor’s capabilities and the amount of
memory on your video card. When you installed X, the configuration process determined
the valid depths for your X server. If you look at XF86Config, you’ll see the valid
choices for your X server. Once the server is running at a particular depth, all users who
log in will run at that depth.

If you start an X session manually with startx, you can specify the depth on the command
line for that session, overriding the default value in XF86Config:

startx -- -depth 16

The –depth 16 option specifies the depth of the display.1 The X server then has 65,536
different colors available for use. Unfortunately, knowing how many colors are available
doesn’t always tell you which colors you can use. We’ll talk more about why this is true
in the section “How Colors Work”.

The rest of this section talks briefly about some of the things you can do with color; we’ll
go into more detail about how you use color and about the technology, in the remainder of
the chapter.

Color as Command-line Options and Resources
All X applications written using an Xt-based toolkit, as mentioned in Chapter 12, Setting
Resources, let you specify foreground and background colors using either command-line
options or resource variables. Specifically, these options and resources are: –fg, –bg,
foreground, and background. There is also a –bd option, which lets you set a
border color. However, it’s not particularly useful since most window managers provide
their own decorations that largely supersede the client’s border.

In addition to letting you set the foreground and background colors, many clients have
additional resources that let you set colors for particular features of an application. For
example, xclock provides options and resources to specify colors for the hands of the
clock (–hd, hands) and the edges of the hands (–hl, highlight). You can combine
these with the standard background and foreground options/resources for the clock face
(background) and the tick marks (foreground) to set up a very colorful clock. Similarly,
the xterm command allows you to set colors for the text cursor (–cr, cursorColor) and
the pointer symbol (–ms, pointerColor, pointerColorBackground) as well the
foreground text color and the background for the window itself. If you are interested in

Chapter 10, XFree86, explains in detail the configuration of the X server.
1 If you are using an older version of XFree86, use the–bpp option instead, to specify the depth as
the number of bits per pixel: -bpp 16.

setting colors for an X client, see the client’s documentation or manpage to find out what
color options and resources you can set.

Perhaps the most dramatic use of color is as a root-window background. The xsetroot
client allows you to specify a solid color for the root window. For example, the following
command sets the root window color:

xsetroot -solid steelblue

This command can be placed in an X initialization file so it executes at logon time.

But you aren’t limited to a solid color. If you want something fancier, you can set the root
window to a bitmap, which you can make as colorful as you’d like. Here’s an example
using the xsnow bitmap that comes with X:

xsetroot -fg lightblue -bg darkblue \
-bitmap /usr/X11R6/include/X11/bitmaps/xsnow

This command fills the root window with light-blue snowflakes tiled on a darker blue
background. See Chapter 3 and the xsetroot manpage for information on creating your
own bitmaps and using them as root-window patterns.

In addition, your window manager allows color customization, letting you specify colors
for window manager decorations, menus, dialog boxes, etc. For many window managers,
predefined themes have been created and are available on web sites such as
http://www.themes.org/. A theme establishes a color scheme that provides a consistent
look for all windows on your desktop.

Finding Colors
How do you find out the names of the colors? The standard colors are listed in the text
file /usr/X11R6/lib/X11/rgb.txt. You can examine the file just as you would any other text
file, and pick colors that sound appealing. The section “The RGB Color Model” later in
this chapter talks more about rgb.txt and its use.

Another method is to use the showrgb client. When you run showrgb, it appears to do
nothing more than cat the file to your terminal window. But showrgb has the advantage
that you don’t have to remember the full pathname to rgb.txt. Given the number of colors,
you’ll want to pipe the command’s output to apaging program, such as more, or pipe the
output to grep. For example, to find all the RGB colors that have orange in their name,
you could use the following command:

showrgb | grep -i orange

showrgb lists the colors and their decimal red, green, and blue values. The preceding
command’s output follows:

255 165 0 orange
255 140 0 dark orange
255 140 0 DarkOrange
255 69 0 orange red
255 69 0 OrangeRed
255 165 0 orange1
238 154 0 orange2
205 133 0 orange3
139 90 0 orange4
255 127 0 DarkOrange1

238 118 0 DarkOrange2
205 102 0 DarkOrange3
139 69 0 DarkOrange4
255 69 0 OrangeRed1
238 64 0 OrangeRed2
205 55 0 OrangeRed3
139 37 0 OrangeRed4

To actually see what the colors look like, you can use the xcolorsel client or gcolorsel, the
GNOME Color Browser,2 shown in Figure 14-1. Both display the colors defined in
rgb.txt. and can be used to pick colors for use with a client program, either by selecting
colors you like and noting their names or by finding the names of colors displayed
elsewhere on your screen. This section describes gcolorsel; the use of xcolorsel is similar.

Figure 14-1: gcolorsel, the GNOME Color Browser

2 If your version of XFree86 didn’t come with xcolorsel, you can download it from one of
the Linux download sites. Or, if GNOME is installed on your system, you can use
gcolorsel instead (even if you aren’t using GNOME as your desktop environment).
gcolorsel is part of the gnome-utils package.

If you are running GNOME, you can run the color browser by selecting Main
MenuProgramsUtilitiesColor Browser. Whether you are running GNOME or not,
you can run gcolorsel from the command line in an xterm window:

$ gcolorsel &

As the figure shows, the window is divided into three sections. The portion that we’re
interested in is the main section, which fills the lower part of the window. There are four
tabs at the top of this window; each tab shows a different view. (Depending on your
version of gcolorsel, the tabs may look slightly different or be ordered differently.) You
can move between the views by clicking the pointer on the appropriate tab.

Two of the tabs say System Colors. One shows the colors in rgb.txt as a list and the other
shows them as a grid, where each color is represented as a small square of color. The
figure shows the list view, displaying the beginning of rgb.txt. On the right is a scrollbar,
which lets you scroll through the entire file. At the left on each line is a small rectangle
displaying the color as it would appear on your screen. The number inside the rectangle is
the line number of that color in the rgb.txt file. The color is followed by the decimal
values for red, green, and blue for that color, and the color's name. If you are just looking
for a color to use with a client, you can ignore the rest of the window and scroll through
the list. When you find a color you like, note its name and you are done. If you are
running GNOME, you can click on the color rectangle and drag the color to a GNOME
object. For example, you can pick a color you like and drag it to the root window or the
panel. The window or panel changes to that color and the new color information is saved
in the GNOME configuration files, making the change permanent across login sessions.

The tab labeled Search is used to find a system color most closely matching a given color.
When you click on the Search tab, the window changes to include a new section between
the tabs and the list of colors. That section includes four sliders and a window with a
large color-filled rectangle as shown in Figure 14-2.

Figure 14-2: gcolorsel’s Search window

Once you’ve selected the Search tab, you can specify a color to match in several ways:

 Move the Red, Green, and Blue sliders to specify a set of RGB values. Note that the
color of the window to the right of the RGB sliders changes automatically and the list
of system colors in the lower portion of the window changes to reflect the colors
closest to the one you just made. When you’re satisfied with the resulting color, go to
the list and find the closest match.

 Grab a color of any pixel on the screen. To use this method, click on the Grab button
in the toolbar (the second row of the gcolorsel window). Your mouse cursor turns

into a miniature dropper. Place this dropper over the color you want on the screen
and click. gcolorsel determines the color’s RGB values, and shows the color and the
RGB values in the Search window. As with the first method, it also shows the system
colors closely matching this one. If you grab a color before selecting the Search tab,
the tab is automatically selected for you.

 If you are running GNOME, you can drag and drop a color from some other color
source, such as the panel or one of the color rectangles in the System Colors grid
view. An easy way to use colors from the grid is to modify the preferences by setting
EditPreferencesDocumentsMode to Toplevel. This setting replaces the tabs
with individual windows, allowing you to drag-and-drop across windows. If you
don’t want separate windows, you can use the color rectangles in the Search tab
itself.

gcolorsel shows only those system colors that closely match the one you selected, and
orders them by how close they are so that the best matches are shown first. You can adjust
the number of system colors displayed (the tolerance) by using the Tolerance slider:
smaller values make gcolorsel more selective, so that only close matches are shown. Note
that the tolerance is a number, not a percent. Setting the tolerance value to 0 shows only
exact matches; setting the value to 100 shows the 100 closest colors.

The GNOME Color Browser has a number of other features that we
haven’t coveredhere, including the ability to edit colors and to create
your own color set. For more information about those features, the Help
menu on the menu bar (the first line of the browser window) displays
the manual. If you issue the gcolorsel command from the command
line, the --help option displays a usage menu showing the command-
line options.

If gcolorsel can’t find an exact match, it shows you the closest matches, and you can pick
one you like. If you want an exact color match and gcolorsel doesn’t find it, you can use
xmag (described in more detail in Chapter 3) to find the numeric color values. To do that,
use xmag to zero in on a part of the image. Then move the mouse to a pixel that has the
color you want and press the first mouse button to display the RGB values for that pixel.
The values are in hexadecimal; to use them on the command line or in a resource file, just
remove the commas, preface the hexadecimal number with a pound sign (#),and enclose
it in double quotes (to prevent the shell from interpreting it as a special character).

xbiff -bg "#90ffe0" &

Or you can translate the hex value to the decimal RGB equivalent, give the color a name,
and add it to rgb.txt to save it permanently. For example, our hex value of 90ffe0 above
converts to an RGB value of 144 255 224 (see the section “Specifying RGB Colors as
Hexadecimal Numbers” and the sidebar “The Hexadecimal Numbering System” later in

 Note that while you’ll still see RGB values expressed in this format, it is an older, deprecated,
way of expressing them. The currently approved way is to use the Xcms format, which we’ll cover
later. In that format, the command would be: xbiff -bg rgb:90/ff/e0. Also note that what
xmag actually shows is 9090,ffff,e0e0 and that both formats are case-insensitive.

this chapter for information on how to do that.) To add this color to rgb.txt with the name
“mint green”, add the following two lines to the file with any text editor:

144 255 224 mint green
144 255 224 MintGreen

Before you can use the new color, you need to restart the X server (the server always
reads rgb.txt when it starts). If for some reason your X server can no longer read this file,
you can still use colors. However, you’ll have to refer to them using hexadecimal notation
instead of the descriptive names.

There’s also no easy way to find the names of the default colors for your X clients. You
can check your own and the system default resource files to see what colors a client is
configured to use, or you can simply try different colors to see if they match. With Gnome
and KDE, the configuration tools show you the current color settings, let you select
colors, and let you define your own colors, but even they don’t tell you the color names.

How Color Works
X client programs that draw in color use the value of the bits associated with a pixel to
determine the color to be placed on the display for that pixel. The way the hardware does
that is known as a visual. The visual provides the hardware with the information it needs
to translate the pixel values into RGB colors, by using the bit values as a pointer to a
lookup table internal to the X server called a colormap. A colormap is a fixed-length table
internal to the X server. Each colormap entry, or colorcell, contains the red, green, and
blue values for a particular color.

There are six visual types. The two that are of the most interest to XFree86 users are
TrueColor and PseudoColor. All six visuals are described briefly in the following list,
then TrueColor and PseudoColor are described in more detail.

DirectColor
Each of the red, green, and blue values for the pixel independently indexes the
equivalent value in the colormap. For a colormap of a given size, this allows for
many more colors than PseudoColor, where the three values together index a single
colorcell. The colormap is writeable.

TrueColor
Like DirectColor, except that the colormap is read-only.

PseudoColor
The red, green, and blue values for the pixel together index a single colorcell. The
colormap is writeable.

StaticColor
Like PseudoColor in that each pixel is a pointer into a colorcell, but the colormap is
read-only.

GrayScale
Similar to PseudoColor, but for each colorcell the red, green, and blue values are
always the same, resulting in a shade of gray. The colormap entries are writeable.

StaticGray
Like GrayScale, but the colormap is read-only. StaticGray visuals are generally used
for monochrome displays that have only two color choices.

The visual being used determines how XFree86 accesses the colormap; in turn, the bit
depth at which X is running determines which visual is used. The best way to see which
visual your system is using is to run the xdpyinfo command; the output from this
command also tells you what other visuals are available (in addition to providing a lot of
other information).

The default visual for an 8-bit display is PseudoColor; for depths greater than 8, the
default is TrueColor. You can change the default by setting the Visual option in the
Display subsection of the Screen section in the XF86Config file; see Chapter 10,
Configuring XFree86, for details. Note, though, that on the PC, there is a single read-
only hardware colormap that has to be shared by all applications.

PseudoColor
With PseudoColor, the colormap cells are filled as colors are entered. Every X window
has an associated colormap. There is a default colormap, which many clients share. In
addition, applications can define their own private colormaps.Because colormaps are
server-specific, if you are on a multiuser system, or you are running many X clients, each
configured to use different colors, there is a possibility that you might run out of entries.

As shown in Figure 14-3, the numeric pixel values in the framebuffer3 are used as an
index into the colormap. The information in the colormap is then used to drive the
hardware that actually displays the color on the screen.

Illustration department, I need help with this figure. It should look like Figure 26-2 on
page 592 of X Users Tools. The following figure, Swiss Alpine Club’s logo, is just a
place holder. If it should get printed by mistake you would my wife a joy!

Figure 14-3: Multiple planes used to index a colormap

Why is this technical detail important? Because it explains several issues that you might
encounter in working with color displays.

First, the range of colors theoretically available on the display is a function of the number
of bits available in the colormap for RGB specification. If 8 bits are available to specify
the value of each of the three primary colors (i.e., each color can take a value from 0 to

If you see your screen flashing strange colors, it’s probably because an application is switching its
private colormap in or out.
3 The framebuffer is the memory on the video card that holds a screen image to be displayed.

255), then the range of possible colors is 2563, or more than 16 million colors. This means
that you can create incredibly precise differences between colors.

However, the number of different colors that can actually be displayed on the screen at
any one time depends on the number of planes (i.e., the depth). An 8-plane PseudoColor
visual can only index 28 colorcells, or 256 distinct colors. Thus, if you are using display
hardware with a color depth of 8 planes, the fact that you can precisely define colors
containing 256 different values of blue is far less significant than the fact that you can’t
use them all at the same time. There isn’t space for all of them to be stored in the
colormap at one time nor does PseudoColor provide a mechanism for selecting them even
if they could be stored.

This limitation is made more significant by the fact that X is a multiclient environment.
When X starts up, usually no colors are initially loaded into the colormap. As clients are
invoked, certain of these cells are allocated. But when all the free colorcells have been
used, it is no longer possible to request new colors. When this happens, you get an error
message telling you that the application cannot allocate the color. Thus, with
PseudoColor, the possibility exists that an application will fail because it cannot allocate a
color, but if it doesn’t fail, you will always get the requested color.

To minimize the chance of running out of colorcells, many programs use shared
colorcells. Shared colorcells can be used by any number of applications, but they can’t be
changed by one application as long as any other applications are still using them. They
can only be deallocated by each application that uses them; when all applications have
deallocated a cell, that cell is available for setting to another color. Shared cells are most
often used for background, border, and cursor colors. You might also want to investigate
the use of themes as a way to standardize the colors you use.

Alternatively, some clients must be able to change the color of graphics they have already
drawn. This requires another kind of cell, called private, which can’t be shared. A typical
use of a private cell would be for the palette of a color-mixing application, where the
primary colors don’t change and therefore can use shared cells, while the color being
mixed uses a private cell.

TrueColor
If you are running XFree86 at 15, 16, 24, or 32 bpp, you are most likely running with a
TrueColor visual. One of the features of TrueColor is that you will always get a color, but
unlike PseudoColor, it might not be the precise color that the application requested.
However, this is less important with TrueColor because all the colors theoretically
available are actually available all the time. In addition, because the TrueColor colormap
is read-only, your application cannot change the color of a pixel once it has been written
to the display. Thus you can have as many colors as you want on the display
simultaneously, but your applications cannot change the color associated with a pixel.

The Color Models
Two color models are used with X: RGB and Xcms. RGB (Red, Green, Blue) is a server-
side non-portable color model, while Xcms (the X Color Management System) is a client-
side, device-independent model. RGB colors are dependent on the display hardware, and

they may look different on dissimilar monitors. Xcms colors are independent of the
device they are displayed on. You don’t have to choose between them; you can take
advantage of both models. The rest of this chapter describes these color models, how to
specify colors with each model, and how to create and manage your own color database.

 We’ve seen how to browse the standard RGB color database to find colors you like.
Keep in mind, though, that there is an inherent limitation in the RGB system—the colors
are created by combining different amounts of red, green, and blue. This system matches
the way most monitors work, but it makes the RGB colors device-dependent. Thus a color
is likely to look different when displayed on different types of monitors. Probably most
users won’t care if their “pink” is too “orangy” and will just experiment with other colors
in the database to find shades they like.

However, if you want absolute precision of color regardless of the environment and
hardware, you’ll want to use the X Color ManagementSystem (Xcms) described in the
section “The X Color Management System”.

The RGB Color Model
Within the rgb.txt file, each color name is associated with three numeric values
corresponding to the amounts of red, green, and blue in the shade, in that order. The
display hardware uses these values to produce a color. For example, here are a few lines
from rgb.txt:

255 222 173 navajo white
255 222 173 NavajoWhite
255 228 181 moccasin
255 248 220 cornsilk
255 255 240 ivory
255 255 255 white

You can see from the last line of the example that if all three primary colors are at their
maximum value of 255, the resulting color is white. Slight variations in the values of
green and blue produce shades of off-white, with names like ivory or moccasin. In
addition, more than one name can be associated with a particular combination of RGB
values. The duplicates are often variations of the same name, such as navajo white and
NavajoWhite above, but they don’t have to be.

Naming colors

Whether you’re running a command or adding a resource, you have to either enter
multiple-word color names like “midnight blue” as single words (e.g., midnightblue) or
surround them with quotes. That’s why we specified the color as steelblue in the
xsetroot command earlier in this chapter; we could have issued the command as follows
with the same result:

xsetroot -screen "steel blue" &

Furthermore, case doesn’t matter. You can refer to steel blue, Steel Blue, SteelBlue, or
steelblue and get the same color, even though rgb.txt contains only the lines:

70 130 180 steel blue
70 130 180 SteelBlue

You can specify an RGB color in different formats:

 A color name from the database

 The numeric color value in hexadecimal (hex) notation, prefixed with a pound sign
(#)

 Using the Xcms format but specifying the RGB color space.

For example, the following commands all produce an xbiff window with the same
foreground color:

xbiff -fg PeachPuff color name
xbiff -fg rgb:ff/da/b9 hexadecimal numeric value
xbiff -fg "#ffdab9" Xcms format

You can use any of the formats on the command line or in resource files—wherever you
can specify a color. As we’ll see later in this chapter, you can also use hex values to get
colors that aren’t in the database.

Advantages and disadvantages of the RGB database

From a user’s standpoint, the advantages of the RGB database are that it:

 Makes available a wide range of colors whose names you can simply plug in to
command lines and resource specifications.

 Allows customization but doesn’t require it.

The primary disadvantage of the RGB database (and the model itself) is that the colors it
defines can look very different on different types of display hardware. This is because the
server accesses the database (or the numeric hex specifications) and simply applies the
color values, without any tuning for the type of monitor, the platform, etc. Certain
intensities of red, green, and blue might produce orange on one display and pink on
another. In other words, as we mentioned earlier, RGB colors are hardware-specific and
thus, non-portable.

Surveying the RGB Database
The default rgb.txt file contains more than 750 color-name definitions. This number is
deceptive, though, since many of the color names are merely spelling or naming variants
that have the same color values. Others are shades of the same color. For example, here
are the entries for the variations of the color "sea green":

143 188 143 dark sea green
143 188 143 DarkSeaGreen
46 139 87 sea green
46 139 87 SeaGreen
60 179 113 medium sea green
60 179 113 MediumSeaGreen
32 178 170 light sea green
32 178 170 LightSeaGreen
193 255 193 DarkSeaGreen1
180 238 180 DarkSeaGreen2
155 205 155 DarkSeaGreen3
105 139 105 DarkSeaGreen4
84 255 159 SeaGreen1
78 238 148 SeaGreen2
67 205 128 SeaGreen3
46 139 87 SeaGreen4

Each of the names corresponds to a color definition consisting of the three numeric RGB
values (the columns are in the order: red, green, and blue). As you can see, some of the
shades are distinguished in the fairly traditional way of being called "light," "medium,"
and "dark." The light, medium, and dark shades of a color can probably be distinguished
from one another on virtually any monitor.

Beyond this distinction, there are what might be termed sub-shades: gradations of a
particular shade identified by number (SeaGreen1, SeaGreen2, etc.). Adjacent sub-shades
of a color may not be clearly distinguishable on all display hardware. For example,
SeaGreen1 and SeaGreen2 may look very much the same. You certainly would not
choose to create a window with a SeaGreen1 background and SeaGreen2 foreground.
The availability of different shades of a color lets you experiment to find one that looks
good on your display.

The color names in the rgb.txt file are too numerous to list here. Although there are no
literal dividers within the file, it can roughly be considered to fall into three sections:

 A standard spectrum of colors (red, yellow, sea green, powder blue, hot pink, etc.),
that seem to be ordered roughly as: off-whites and other pale colors, grays, blues,
greens, yellows, browns, oranges, pinks, reds, and purples.

 Sub-shades of the colors in the first section (such as SeaGreen 1 through 4).

 One hundred and one shades of gray, numbered 0 through 100. This large number of
precisely graduated grays provides a wide variety of shading for grayscale displays.

Other RGB Color Databases
If you aren’t happy with the standard RGB database, the easiestsolution is to modify it by
adding the colors you want to rgb.txt. However, it is possible to substitute an alternative
database. There are two ways to do this:

 Modify the line in XF86Config that specifies the location of rgb.txt and substitute the
name of the new file. The standard entry (in the Files section) looks like this:
RgbPath "/usr/X11R6/lib/X11/rgb"

For example, let’s change that to the new path:
RgbPath "/home/werner/myrgb"

When we restart X, RGB colors are taken from myrgb.txt.

 Replace the existing rgb.txt with another database file. (You might want to back up
the old file first, just to be safe.)

In either of the above cases, you’ll need root privileges to make the
change. Also, since there is only one RGB database for the server, if
you are on a multiuser system and you change the database, you’ll be
changing it for everyone. Adding entries is okay, but removing entries
or replacing the entire database can cause problems for other users.

There are actually two hundred and two entries in this section--one for each shade spelled gray
and another for each shade spelled grey.

In addition to the standard RGB color database, the source distribution of X includes
three alternative databases that can be used. In the XFree86 source tree, the files are in the
directory xc/programs/rgb/others. The databases you’ll find there are called raveling.txt,
thomas.txt, and old-rgb.txt.

These databases are primarily older versions of the current standard RGB database. The
color names are pretty much the same, but in some instances the numeric RGB values
associated with the colors are different. So if you don’t like the way a particular color
appears on your monitor, you could try substituting the value in the older database to see
if you like that better. But that’s a lot of trouble to go to, when you can just pick a
different color instead.

Specifying RGB Colors as Hexadecimal Numbers
As we’ve seen, each RGB color has three numeric values associated with it, that specify
the amount of red, green, and blue in the color. In the rgb.txt file, these values are in
decimal notation and are paired with a color name. For example:

0 0 0 black
255 235 205 BlanchedAlmond
255 255 255 white

Being able to specify a color by numeric value means that you can be very precise and
that you can define a virtually infinite number of shades. You are then independent of the
possibly limited number of entries found in rgb.txt. (Note, though, that you are still
constrained by the size of the colormap and the number of color cells it contains.) In
addition to decimal values, the RGB model also allows you to specify colors in
hexadecimal (commonly referred to as hex) notation. The additional flexibility of being
able to supply the values in hex as well as decimal is handy for working with programs
like xmag that output hex.

Note to production: The code in the sidebar is supposed to come after the paragraph that
starts “For example,...” not before it. It’s correct if you look at the file in Normal view,
but not in Print Layout view.

The Hexadecimal Numbering System
Hex is a base-16 numbering system used in programming and in some scientific
disciplines; in addition to the normal decimal characters 0-9, it also uses the
letters A-F to represent the numbers 10-15. Thus, for example, the number E in
hex is the same as 14 decimal, hex F is decimal 15, hex 10 is decimal 16, and
hex 11 is decimal 17.

A single hex digit can be represented in four bits. The hex numbers 0 through FF
are equivalent to decimal 0 through 255. These decimal 256 possibilities can be
represented in eight bits, which is a byte.

Hex numbers are case-insensitive and can be specified as the capital letters A-F
or the small letters, a-f. Hex AD is the same as hex ad. Often the prefix 0x is
added to indicate a hex number. Hex AD can therefore be written as 0xAD.

For example, in the section “Finding Colors”, we ran xmag to find the hex RGB
value 90ffe0, where 90 is the hex value for red, ff is the hex value for green, and

e0 is the hex value for blue. Let’s translate these numbers to decimal:

The result is the RGB triplet 144 255 224. An easier way to do the conversion,
especially if you want to convert from decimal to hex, is to find a calculator,
such as the KDE calculator kcalc, that does the conversion for you. With kcalc,
for example, you can set the base to decimal, enter a decimal value, then change
the base to hex and kcalc converts the number and displays the hex value.

When you run xmag and click the left mouse button on a pixel of an interesting color,
you’ll see a message like the following:

Pixel 1644912 at (966,84) colored (1919,1919,7070).

The first part of the line gives you information about the pixel you selected, which you
can ignore. The rest of the line gives you the red, green, and blue color values (in this
case 1919, 1919, and 7070). Then run xbiff using that color:

xbiff -fg "#191970" &

and you get an xbiff window with a mailbox (the foreground) of the same color as the one
you selected in xmag. See the section “Inside the RGB Color Model” for an explanation
of why we were able to specify only two digits for each value in the–fg option rather than
four digits (i.e., 191970 rather than 191919197070).

Adding Colors to the RGB Database
As we’ve seen, the X Window System comes with a predefined set of colors, listed in the
file /usr/X11R6/lib/X11/rgb.txt. If you have access to a color-editing program such as
xcoloredit, you can also come up with your own colors and add them to the standard RGB
database, making them easier to refer to. This also makes them available to other users on
your system. To add them, you first need to know their decimal RGB color values.

Once you have those values, you can pair them with a color name and add the color
definition to rgb.txt. The format of a line in rgb.txt is:

red green blue color_name

90=(9x16)+0=144
ff=(15x16)+15=255
e0=(14x16)+0=224

where red, green, and blue are integers in the range 0 to 255, and color_name is
case-insensitive but cannot include any special characters or symbols. There must be a tab
(not spaces) separating the values from the name, but the name can include spaces.

Say you want to define a color called tropical blue, with RGB values of 9, 229, and 251.
Since the name is composed of more than one word, you need to make two entries: one as
multiple words (tropical blue) and one as a single word (TropicalBlue).

To update the RGB database, you just edit rgb.txt to add the new color specification. The
new lines can go anywhere in the file and will look like this:

9 229 251 tropical blue
9 229 251 TropicalBlue

If you add a color with a one-word name, a single line will do:

9 229 251 caribbean

The next time you restart X, any new colors you added will be available.

Inside the RGB Color Model
Most color displays on the market today, whether CRTs or LCDs, are based on the RGB
color model.

On a CRT, each pixel on the screen is actually made up of three phosphors: one red, one
green, and one blue. Each of these three phosphors is illuminated by a separate electron
beam, called a color gun. These color guns can be lit to different intensities to produce
different colors on the screen.

LCD displays use three liquid-crystal cells to provide the color for a single pixel. Each
cell has a red, green, or blue filter over it. Electrical impulses light the cells, transmitting
the filtered color to that pixel.

In either case, numeric red, green, and blue values determine the amount of light that
passes through each phosphor or liquid crystal cell, which in turn determines the intensity
of one of the primary colors. The relative amounts of each of the three primary colors
determine the final color for one pixel. In the rgb.txt file, each color is associated with a
decimal number between 0 and 255. Consider the following line from the rgb.txt file:

173 216 230 light blue

The three numbers make up what is known as an RGB triplet. As we’ve seen, the rgb.txt
file contains more than 750 mappings of RGB triplets to color names.

When all three colors are fully illuminated (the triplet values are 255, 255, 255), the pixel
appears white to the human eye. When all three are dark (the triplet values are 0, 0, 0), the
pixel appears black. As the illumination of each primary color varies, other colors are
produced. For example, equal portions of red and green, with no admixture of blue,
makes yellow.

An RGB triplet can also be supplied in hexadecimal notation, which permits greater
precision than the decimal values in rgb.txt. Depending on the underlying hardware,
different servers may use a larger or smaller number of bits (from 4 to 16) to describe the
intensity of each primary. To insulate you from this variation, most clients are designed to
take color values containing anywhere from 4 to 16 bits (1 to 4 hex digits), and the server

then scales them to the hardware. As a result, you can specify hexadecimal values in any
one of these formats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

Or in the Xcms format:4

rgb: R/G/B
rgb: RR/GG/BB
rgb: RRR/GGG/BBB
rgb: RRRR/GGGG/BBBB

where R, G, and B represent single hexadecimal digits and determine the intensity of the
red, green, and blue primaries that make up each color. As you add more bits, you get
greater precision and finer gradations of color.

When fewer than four digits are used, they represent the most significant bits of the value.
For example, #3a6 is the same as #3000a0006000.

What this means concretely is perhaps best illustrated by looking at the hex values that
correspond to some colors in the color-name database. We’ll use 8-bit values—two
hexadecimal digits for each primary. These definitions are the hexadecimal equivalents of
the decimal values for some of the colors found in the rgb.txt file:

#000000 black
#FFFFFF white
#FF0000 red
#00FF00 green
#0000FF blue
#FFFF00 yellow
#00FFFF cyan
#FF00FF magenta
#5F9EA0 cadet blue
#6495ED cornflower blue
#ADD8E6 light blue
#B0C4DE light steel blue
#0000CD medium blue
#000080 navy blue
#87CEED sky blue
#6A5ACE slate blue
#4682B4 steel blue

As you can see, pure red, green, and blue result from the corresponding bits being turned
on fully. Turning all the primaries off yields black, while turning all on produces white.
Yellow, cyan, and magenta can be created by pairing two of the other primaries at full
intensity. The various shades of blue are created by varying the intensity of each primary.

Of course, fiddling with the numbers is fairly unintuitive. If you want to play with color,
use a color editor.

4Xcms is described in the next section, “The X Color Management System”.

Xcms, the X Color Management System
If you’re not entirely satisfied with the hardware-specific RGB model, an additional, more
precise color model is available. The X Color Management System (Xcms), developed by
Tektronix and later adopted by the X Consortium, was designed to overcome the
limitations of the RGB model by providing device-independent color. Under Xcms, color
definitions are based upon internationally recognized standards. The idea behind Xcms is
that color relies upon human vision. Simply put, red should look basically the same on
any monitor, on any platform.

Xcms accepts color values in several different formats, called color spaces. Most of these
color spaces describe color in a device-independent manner, using scientific terms and
values commonly applied to color. Among the color spaces that Xcms recognizes are two
RGB color spaces; however, the RGB colors are still not portable even when specified as
Xcms color spaces. As with the RGB model, you can specify the Xcms color spaces on
the command line and in resource files. An example of a color in the RGB color space
specified on the command line as an Xcms color is:

xbiff -fg rgb:19/19/70

From a user’s standpoint, the primary advantages of Xcms are that it:

 Recognizes several types of color specification (color spaces, described in the next
section, “The Xcms Color Spaces), which can be supplied on the command line or in
resource files.

 Enables you to make a database of colors you “mix” yourself, using a color editor.
(While the server-side RGB model allows for a single system-wide database, Xcms
allows any user to have a private database.) In the Xcms database, you pair a name
with a value in any of the accepted color spaces (formats). The Xcms database can
then serve as an alternative to the default RGB database (you can specify colors from
either).

 Provides the ability to “tune” colors to display more accurately on specific hardware.

 Allows you to take advantage of sophisticated color printer technology.

Though your Linux system certainly supports the Xcms color management system and it
has its definite advantages, most users prefer the RGB color model. It’s familiar and for
the average user, the greater precision of Xcms is not necessary. If you are simply looking
for colors for your client windows, use the RGB colors. However, if you are developing
an application, or you do serious graphics work, you may want to use Xcms to be sure of
getting the colors you intend.

The Xcms Color Spaces
Under Xcms, each color specification has a prefix that indicates the color space and a
numeric value that specifies the color. Table 14-1 summarizes the color spaces and their
prefixes.

Table 14-1: Xcms Color Spaces

Name Prefix

Tektronix HVC TekHVC

Various CIEformats CIEXYZ, CIEuvY, CIExyY, CIELab, CIELuv

RGB RGB

RGB Intensity5 RGBi

Of the valid color spaces, the Tektronix HVC and the various CIE formats specify color
in a device-independent manner, while the RGB color spaces are hardware-specific, as
we’ve seen. Therefore, to take advantage of the portability of the X Color Management
System, you’ll want to use TekHVC or one of the CIE formats.

To specify a color under Xcms, you combine its numeric value with the appropriate prefix
for the color space you are using. The syntax of an entry in the Xcms database is:

prefix:value1/value2/value3

The following are examples of valid Xcms color specifications:

CIEuvY:0.15259/0.40507/0.44336
TekHVC:223.93036/72.45283/29.67013
RGB:6a/bb/d8

These three sample values all define a shade of blue, each using a different notation. We
can supply any of these color specifications on a given display and get the same color.
Thus, the following command lines should produce identical xbiff windows:

xbiff -fg CIEuvY:0.15259/0.40507/0.44336 &
xbiff -fg TekHVC:223.93036/72.45283/29.67013 &
xbiff -fg RGB:6a/bb/d8 &

Note that like the RGB color names, color specifications in an Xcms color space format
are case-insensitive. Thus, rgb:6a/bb/d8 and RGB:6A/BB/D8 are equivalent.

Because the RGB colors aren’t portable even when specified in Xcms format, if we want
to display this precise shade of blue on another monitor we have to use one of the
portable specifications:

CIEuvY:0.15259/0.40507/0.44336
TekHVC:223.93036/72.45283/29.67013

You can also use any valid color space as the value of a resource variable:

xbiff*foreground: TekHVC:223.93036/72.45283/29.67013

It’s handy to be able to plug these numbers into a command line or resource specification,
but if you want to use your own colors on a regular basis, it’s a good idea to create an
Xcms database—then you can refer to the colors by name.

Tektronix developed the X Color Management System; the initials HVC refer to hue, value, and
chroma, the scientific characteristics of color.
 CIE stands for Commission Internationale de l’Eclairage(or International Commission on
Illumination), an international standards organization.
5 RGB Intensity expresses the intensity of the red, green, and blue values linearly as floating-point
values from 0.0 to 1.0 (with an optional sign and exponent), where 1.0 means full intensity of the
color.

Creating an Xcms Color Database
This section tells you how to create your own Xcms color database. You should note,
though, that there is one limitation: you cannot access an Xcms database across the
network. In other words, if you create an Xcms color database on your own workstation,
you can’t use any of those color definitions in a remote process. This limitationhas
nothing to do with whether a particular color specification is portable. When we say that
an Xcms color is portable, we mean that it will look the same on any system. However,
you must specify the color on that system or have access to the color definition in a
database local to the client in order to use that color.

Creating an Xcms color database is easy. A sample Xcms database is provided in the
XFree86 source tree as xc/lib/X11/Xcms.txt. The format of an Xcms color database is:

XCMS_COLORDB_START 0.1
color_name<tab>color_space

.

.

.
XCMS_COLORDB_END

The first and last lines are entered exactly as shown here. The 0.1 at the end of the first
line indicates the version of the file’s format and is required. Betweenthe first and last
lines you can put any number of color definitions. A text name for the color goes in the
first column, followed by a tab (this is also important), and then a valid color space. Note
that the arrangement of the columns is the opposite of that in the rgb.txt file, in which the
numeric values come first and the text name second.

By default, Xcms looks for /usr/X11R6/lib/X11/Xcms.txt. You can specify an alternative
database file by setting the XCMSDB environment variable. This enables every user to
have a private color database. Note, however, that Xcms only checks one database. If you
set XCMSDB to another file, Xcms does not check /usr/X11R6/lib/X11/Xcms.txt, even if
it exists. (In other words, you cannot specify your own private colors and also take
advantage of system-wide Xcms definitions.)

If you’re on a multiuser system, you might choose to create an Xcms database for all
users to access, putting it into the directory /usr/X11R6/lib/X11 (where rgb.txt also
generally can be found). In this case, the database file should be named Xcms.txt.

If you are creating a personal Xcms database, you can give it any name you want; then
you just need to set the XCMSDB environment variable to the full pathname of the file.
For example, say you create some colors you’d like to use in your normal X session (for
the root window, window titlebars, etc.). You might put these into an Xcms file in your
home directory called .xcolors. Then specify one of the following, depending on your
shell:

export XCMSDB=~/.xcolors bash
setenv XCMSDB ~/.xcolors tcsh

so the X server can find it. You probably want to put this in your session file, or in your
.bashrc or .tcshrc file, so it runs every time you log in.

Here are the color entries from a sample database file:

XCMS_COLORDB_START 0.1
red CIEXYZ:0.3811/0.2073/0.0213

green CIEXYZ:0.3203/0.6805/0.1430
blue CIEXYZ:0.2483/0.1122/1.2417
aquamarine CIEXYZ:0.5512/0.7909/0.9759
cadet blue CIEXYZ:0.2218/0.2815/0.4708
cornflower blue CIEXYZ:0.3400/0.3109/1.1067
navy blue CIEXYZ:0.0478/0.0216/0.2392
navy CIEXYZ:0.0478/0.0216/0.2392
brown CIEXYZ:0.1333/0.0772/0.0217
gray0 TekHVC:0.0/0.0/0.0
gray10 TekHVC:0.0/10.0/0.0
gray20 TekHVC:0.0/20.0/0.0
gray30 TekHVC:0.0/30.0/0.0
gray40 TekHVC:0.0/40.0/0.0
gray50 TekHVC:0.0/50.0/0.0
gray60 TekHVC:0.0/60.0/0.0
gray70 TekHVC:0.0/70.0/0.0
gray80 TekHVC:0.0/80.0/0.0
gray90 TekHVC:0.0/90.0/0.0
gray100 TekHVC:0.0/100.0/0.0
XCMS_COLORDB_END

Like the RGB names, Xcms color names are case-insensitive. The sample database
includes only portable CIE and TekHVC color specifications, but you can also include
RGB color spaces in your Xcms.txt file.

Once Xcms.txt has been set up, you can specify any of the color names it contains. Thus,
you can immediately enter the command line:

xsetroot -solid aquamarine &

Multiple-word color names must be specified as a single word or be surrounded by
quotes.

Inside the Xcms Model
While Xcms technology is complex, and a complete explanation is beyond the scope of
this book, we’ll mention some of its features that we haven’t already covered here. There
are actually two components to Xcms:

 The color spaces or formats (that should look the same on any system)

 Optional Device Color Characterization(DCC) data that “tunes” color specifications
for a particular hardware display.

We’ve already taken a look at some of the valid color spaces. If you specify a color using
one of the portable Xcms color spaces, you should get the same color regardless of the
monitor, server, etc.

The color spaces alone should be sufficient for most users. However, if you are
developing applications, you might choose to install a DCC file (also called a Device
Profile), to fine-tune Xcms colors for a particular hardware display. This tuning is an
optional part of the system. You would probably need two adjacent monitors to see the
difference between a system accessing DCC data and one not..

The DCC data is stored in properties on the screen’s root window. Some servers can
automatically load the properties with data appropriate to the attached display(s), but you
may have to run the xcmsdb client to load the DCC data from a text file you specify.

Two sample DCC files come in the XFree86 source tree; you’ll find them in the directory
xc/programs/xcmsdb/datafiles with the very original names sample1.dcc and
sample2.dcc.

The top portion of a DCC file (following some comments) gives a description of the
monitor. For example, the following lines appear in sample2.dcc:

SCREENDATA_BEGIN 0.3

NAME Tektronix 19" (Panasonic) CRT
PART_NUMBER 119-3916-00
MODEL XP27
SCREEN_CLASS VIDEO_RGB
REVISION 2.0

...

The remainder of the file provides data about the monitor’s color capabilities. This data is
loaded into the root window properties and then plugged into Xcms functions, allowing
each device-independent color value to be converted into a device-specific value. You
load a DCC file using the program xcmsdb, in the directory /usr/X11R6/bin. Using the
sample file above, the command is:

xcmsdb sample2.dcc

You would typically load the DCC file in your X startup script.

Using Both RGB and Xcms
Even if you use both RGB and Xcms color models, in practice you shouldn’t have to
think too much about it. You can supply color specifications in any form acceptable to
either color model, and X resolves any possible conflicts.

X searches to match a color specification in this order:

1. If the specification begins with the pound sign (#), the subsequent number is
interpreted as a hexadecimal RGB value.

2. If the specification contains a colon (:), the prefix is checked to see if it matches a
valid Xcms color space; if it does, the subsequent number is interpreted as a value in
that color space. All currently valid color spaces recognize the forward slash (/) as
the delimiter between numeric values. (Each color space defines its own delimiter, so
hypothetically new formats may recognize other delimiters.)

3. If the specification contains neither a pound sign nor a colon, it is assumed to be a
color name that should appear in either an Xcms database or the RGB server
database. The Xcms database is checked first if it exists; thus if a color name appears
in both databases, the Xcms color value will be used.

